High Energy Dilepton Experiments Alberica Toia Physics Department CERN # **RHIC** • RHIC = Relativistic Heavy Ion Collider located at Brookhaven National Laboratory # RHIC and its experiments • what's so special about RHIC? - - it's a collider - no thick targets - detector systematics do not depend on E_{CM} - p+p: √s ≤ 500 GeV (polarized beams) A+A: $\sqrt{s_{NN}} \le 200 \text{ GeV (per NN pair)}$ - experiments with specific focus - BRAHMS (until Run-6) - PHOBOS (until Run-5) - multi purpose experiments - PHENIX - STAR # Low mass eter: prospects @ RHIC - •2 scenarios @ SPS profit from high baryon density - dropping ρ mass - broadening of ρ #### •what to expect at RHIC? | | SPS
(Pb-Pb) | RHIC
(Au-Au) | |------------------------------------------------------|----------------|-----------------| | dN(p)/dy | 6.2 | 20.1 | | produced baryons (p, p, n, n) | 24.8 | 80.4 | | $p - \overline{p}$ | 33.5 | 8.6 | | participants nucleons (p – p)A/Z | 85 | 21.4 | | | 110 | 102 | baryon density: almost the same at SPS & RHIC (although the NET baryon density is not!) # e+e-: theoretical guidance at RHIC - in-medium modifications of vector mesons persists - open charm contribution becomes significant # The founding fathers' view - before 1991 - proposals for various experiments at RHIC - STAR, TALES, SPARC, OASIS, DIMUON ... - except for STAR everything else is burned down - from the ashes rises PHENIX - Pioneering High Energy Nuclear Interaction eXperiment - 1991: PHENIX "conceptual design report" - philosophy - measure simultaneously as many observables relevant for QCD phase transitions as you can imagine - all but one: low-mass dielectrons - why no dielectrons? - included in first TALES proposal - considered to be "too difficult" for PHENIX a lot of work can make impossible things happen # PHENIX in practice Nuclear matter in extremis # PHENIX in principle - 3 detectors for global event characterization - central spectrometers - measurement in range: $|\eta| \leq 0.35 \\ p \geq 0.2 \; GeV/c$ - forward spectrometers - muon measurement in range: $$1.2 < |\eta| < 2.4$$ p $\ge 2 \text{ GeV/c}$ two central electron/photon/hadron spectrometers two forward muon spectrometers # Au-Au collision as seen in PHENIX # PHENIX: tracking & particle ID ## **Momentum determination** Simple relation between bending and momentum $\alpha = K/p_T$ K~200 rad GeV/c • Momentum resolution is determined by the resolution of α , which is determined by : single hit resolution(SHR) and alignment SHR is measured to be 150mm, about 0.3 mrad, which corresponds to 0.3/200=0.1% resolution. Affected by global and wire alignments ## **Electron Identification I** Charged particle tracking (dm: 1%) DC, PC1, PC2, PC3 and TEC **PHENIX optimized for Electron ID** - •Cherenkov light RICH + - shower EMCAL - emission and measurement of Cherenkov light in the Ring Imaging Cherenkov detector - → measure of min. velocity - how can pions ever be mis-identified below 4.9 GeV/c? - •Radiation of cherenkov light (≥ 4.9 GeV/c) - Production of delta electrons - •Random coincidence (high multiplicity) - spherical mirror - → parallel tracks produce rings at SAME location Alberica Toia ### **Electron Identification II** production and of el.magn. shower in the Electro- Magnetic Calorimeter - → measure of energy E - PbSc: sampling cal., layers of lead and scintillator - PbGI: homogeneous lead-glass volume, Cherenkov radiator - •electron: E ≈ p - •hadron: E < p - after RICH cuts, clear electron signal - •cut on E/p cleans electron sample! - background - photon conversions - random associations (next slide) - main background source: random combination of hadron track/shower with uncorrelated RICH ring - •"standard" subtraction technique: flip-andslide of RICH - swapped background agrees in shape with E/p distribution of identified hadrons - background increases with detector occupancy (can reach ~30% in central Au+Au collisions) # **PHENIX** measures dielectrons - first attempt from 2002 Au-Au Run - S/B ~ 1/500 (!) for minimum bias events - not enough statistics - Au-Au data taken in 2004 - ~ 100x statistics - photon conversions reduced by factor 2-3 - expect background reduction by ~ 2 CERN # Detailed measurement of the e+e- pair continuum in p+p and Au+Au collisions at √s_{NN} = 200 GeV and implications for direct photon production Detailed measurement of the e^+e^- pair continuum in p+p and Au + Au collisions at $\sqrt{s_{NN}}$ =200 GeV and implications for direct photon production A. Adare, S. Afanastev, C. Aidala, N.N. Ajitanand, S. Y. Akiba, 44,45 H. Al-Bataineh, S. J. Alexander, A. Al-Jamel, S. K. Aokl, A. Al-Jamel, S. K. Aokl, A. Al-Jamel, S. K. Aokl, A. Al-Jamel, S. K. Aronson, J. Asal, E. T. Atomssa, S. Aronson, A. J. Asal, E. T. Atomssa, S. Al-Jamel, S. Aronson, A. J. Asal, E. T. Atomssa, S. Al-Jamel, S. Aronson, A. A. Al-Jamel, S. Aronson, A. Al-Jamel, S. Aronson, A. A. Al-Jamel, S. Aronson, A. A. Al-Jamel, S. Aronson, Al-Jame R. Averbeck, 51 T.C. Awes, 40 B. Azmoun, 4 V. Babintsev, 10 G. Baksay, 15 L. Baksay, 15 A. Baldisseri, 12 K.N. Barish, 5 P.D. Barnes, ³² B. Bassalleck, ³⁸ S. Bathe, ⁵ S. Batsouli, ¹⁰, ⁴⁰ V. Baublit, ⁴³ F. Bauer, ⁵ A. Bazilevsky, ⁴ S. Belikov, ⁴, ²², ⁸ R. Benneut, ⁵¹ Y. Berdnikov, ⁴⁷ A.A. Bickley, ⁶ M.T. Bjorndal, ¹⁰ J.G. Boissevain, ³² H. Borel, ¹² K. Boyle, ⁵¹ M.L. Brooks, ³² D.S. Brown, ³⁶ D. Bucher, ³⁵ H. Bussching, ⁴ V. Bumazhnov, ¹³ G. Bunce, ⁵, ⁴⁵ J.M. Burward-Hoy,²² S. Butsyk,^{22,51} S. Campbell,⁵¹ J.-S. Chai,²⁴ B.S. Chang,⁵⁹ J.-L. Charvet,¹² S. Chernichenko,¹⁹ J. Chiba, 25 C.Y. Chi, 10 M. Chiu, 10, 20 I.J. Chot, 59 T. Chujo, 56 P. Chung, 50 A. Churyn, 19 V. Clanciolo, 40 C.R. Cleven, ¹⁷ Y. Cobigo, ¹² B.A. Cole, ¹⁰ M.P. Comets, ⁴¹ P. Constantin, ^{22, 22} M. Csandd, ¹⁴ T. Csörg^{6, 26} T. Dahms, ⁵¹ K. Das, ¹⁶ G. David, ⁴ M.B. Deaton, ¹ K. Dehmelt, ¹⁵ H. Delagrange, ⁵² A. Dentsov, ¹⁹ D. d'Enterria, ¹⁰ A. Deshpande, ^{45, 51} E.J. Desmond, ⁴ O. Dieuzsch, ⁶⁶ A. Dion, ⁵¹ M. Donsdelli, ⁴⁸ J.L. Drachenberg, ¹ O. Drapter, ³⁰ A. Droes, 51 A.K. Dubey, 58 A. Durum, 19 V. Dzhordzhadze, 5, 53 Y.V. Efremenko, 40 J. Egdemir, 51 F. Ellinghaus, 9 A. Dress, "A. L. Durby," A. Durbin, "V. Lizhordzinskie," "I. V. Erremensko, "E. Egoemi," F. Egoemi, "F. Egoemi," F. Eminganus, "W. S. Emam, "A. Enokkono, 18,31 H. En'po, 44,65 B. Espagnon, 4 S. Esum, 55 K.O. Eyser, E. D.E. Flekks, 34,65 M. Finger, Jr., 6,22 M. Finger, 5,22 F. Fleures, 20 S.L. Fokin, 26 B. Forestier, 23 Z. Fraenkel, 26, * J.E. Franz, 10,51 A. Franz, * A.D. Frawley, 16 K. Fujtwara, 44 Y. Fulkso, 26, 45 S.-Y. Fung, 5 T. Fussyasu, 37 S. Gafratz, 30 I. Garshvill, 25 F. Gastinesu, 25 M. Germaln, 25 A. Glenn, 5,53 H. Gong, 5 M. Gonja, 25 J. Goesse, 12 Y. Goto, 44, 45 R. Granter de Cassagnae, 20 N. Grau, 22 S.V. Greene, 26 M. Grosse Perdekamp, 20, 45 T. Gunji, 8 H.-A. Gustafisson, 24 T. Hachiya, ^{18,64} A. Hadj Henni, ²² C. Haegemann, ²⁸ J.S. Haggerty, ⁴ M.N. Hagiwara, ⁵ H. Hamagaki, ⁸ R. Han, ⁴² H. Harada, ¹⁸ E.P. Hartouni, ²¹ K. Haruna, ¹⁸ M. Harvey, ⁴ E. Haedum, ³⁴ K. Hasuko, ⁴⁴ R. Hayano, ⁸ M. Heffner, ³¹ T.K. Hemmick, ⁵¹ T. Hester, ⁵ J.M. Heuser, ⁴⁴ X. He, ¹⁷ H. Higjima, ²⁰ J.C. Hill, ²² R. Hobbs, ³⁸ M. Hohlmann, ¹⁵ M. Holmes, ⁵⁶ W. Holzmann, ⁵⁰ K. Homma, ¹⁸ B. Hong, ²⁷ T. Horaguchi, ⁴⁴, ⁵⁴ D. Hornback, ⁵³ M.G. Hur, ²⁴ T. Ishhara, ⁴⁴ K. Imal, ²⁹, ⁴⁴ M. Inaha, ⁵⁵ Y. Inoue, ⁴⁶, ⁴⁴ D. Isenhower, ¹ L. Isenhower, ¹ M. Ishhara, ⁴⁴ T. Isobe, ⁸ M. Issah, ⁵² A. Isupov, ⁵² B.V. Jacak, ⁵¹, ¹ J. Jia, ¹⁰ J. Jin, ¹⁰ O. Jinnouch, ⁵² B.M. Johnson, ⁴ K.S. Joo, ³⁶ D. Jouan, ⁴¹ F. Kajihara, ⁸, ⁶⁴ S. Kametani, ⁸, ⁵⁷ N. Kamihara, ⁴⁴, ⁵⁴ J. Kamin, ⁵¹ M. Kaneta, ⁴⁵ J.H. Kang, ⁵⁹ H. Kanou, ⁴⁴, ⁵⁴ T. Kawagishi, ⁵⁵ D. Kawall, ⁴⁵ A.V. Kazantsev, ²⁸ S. Kelly, ⁹ A. Khanzadoev, ⁴³ J. Kikuchi, ⁵⁷ D.H. Kim, ³⁶ D.J. Kim, ⁵⁸ E. Kim, 49 Y.-S. Kim, 24 E. Kinney, 9 A. Kiss, 14 E. Kistenev, 4 A. Kiyomichi, 44 J. Klay, 31 C. Klein-Boesing, 25 L. Kochenda, ³ V. Kochetkov, ¹⁸ B. Komkov, ⁶ M. Konno, ⁵ D. Kotchetkov, ⁵ A. Kozlov, ³⁶ A. Král, ¹¹ A. Kravitz, ¹⁰ P.J. Kroon, ⁶ J. Kubart, ⁶, ²¹ G.J. Kunde, ²⁵ N. Kurihara, ⁸ K. Kurita, ⁴⁵, ⁴⁸ M.J. Kweon, ²⁷ Y. Kwon, ⁵³, ⁵⁶ G.S. Kyle, ³⁶ R. Lacey, ⁵⁰ Y.-S. Lal, ¹⁰ J.G. Lajote, ²² A. Lebedev, ²² Y. Le Bornec, ⁴¹ S. Leckoy, ⁵¹ D.M. Lee, ²⁵ M.K. Lee, ⁵⁸ T. Lee, ³⁸ M.J. Leitch, ²⁸ M.A.L. Lette, ⁴⁸ B. Lerat, ⁴⁸ H. Lim, ⁴⁸ T. Liska, ¹¹ A. Livinenko, ²³ M.X. Liu, ²⁵ X. Li, ⁷ X.H. Li,5 B. Love,55 D. Lynch,4 C.F. Magutre,55 Y.I. Makdisi,3,4 A. Malakhov,23 M.D. Malik,38 V.I. Manko,28 Y. Mao, ⁶², ⁶⁴ L. Mašek, ⁶, ²¹ H. Massu, ²⁵ F. Matathias, ¹⁰, ⁵¹ M.C. McCain, ²⁰ M. McCumber, ⁵¹ P.L. McGaughey, ²² Y. Miake, ⁵⁵ P. Mikot, ⁶, ²¹ K. Miki, ⁵⁵ T.E. Miller, ⁵⁶ A. Milov, ⁵¹ S. Mioduszewski, ⁴ G.C. Mishra, ¹⁷ M. Mishra, ² J.T. Mitchell, M. Mitrovski, A. Morreale, D.P. Morrison, J.M. Moss, Z. T.V. Moukhanova, 28 D. Mukhopadhyay,⁵⁶ J. Murata,⁴⁶,⁴⁴ S. Nagamiya,²⁵ Y. Nagata,⁵⁵ J.L. Nagle,⁹ M. Naglis,⁵⁸ I. Nakagawa,⁴⁴,⁴⁵ D. Mukhopadhyay, ²⁶ J. Murata, ²⁶ 44 S. Nagamiya, ²⁵ Y. Nagata, ²⁵ J.L. Nagle, ³ M. Naglis, ³⁸ I. Nakaguwa, ⁴⁴, ⁴⁵ Y. Nakamiya, ¹⁸ T. Nakamura, ¹⁸ K. Nakano, ⁴⁴, ⁵⁴ J. Newby, ³¹ M. Nguyen, ¹⁸ B.E. Norman, ²⁸ R. Nouteer, ⁴ A.S. Nyanin, ³⁸ I. Norman, ²⁸ R. Nolteer, ⁴ S.X. Oda, ⁸ C.A. Oglyle, ²⁹ H. Ohnishi, ⁴⁴ I.D. Ojha, ⁵⁶ H. Okada, ²⁹, ⁴⁴ K. Okada, ⁴⁵ M. Ouche, ⁴⁸ M. Oucheda, ¹⁸ N. Cozawa, ⁸ R. Pak, ⁴ D. Pal, ⁵⁶ A.P.T. Palounek, ²⁹ V. Pantuev, ⁵¹ V. Papavasedilou, ²⁹ J. Park, ⁴⁹ W.J. Park, ²⁷ S.F. Pate, ³⁹ H. Pet, ²⁹ J.-C. Peng, ²⁹ H. Pereira, ¹² V. Peresedov, ²⁹ D. Vu. Peressounko, ²⁸ C. Pinkonburg, ⁴ R.P. Pasani, ⁴⁰ M.L. Purschke, ⁴ A.K. Purwar, ²⁰, ²¹ H. Qu, ¹⁷ J. Rak, ²⁰, ²⁸ A. Rakotozafindrahe, ²⁹ I. Ravinovich, ²⁸ K.F. Read, ²⁰, ²³ S. Rembeckl, ¹⁵ M. Resuer, ²¹ K. Reygen, ²⁵ V. Blabov, ⁴⁴ Y. Blabov, ⁴⁴ G. Roche, ²³ A. Romana, ³⁰, ⁴⁸ M. Rosat, ²² S.S. F. Rosanda, ³¹ P. Rosanda, ³¹ V. Samsonov, ⁴⁸ H.D. Sato, ²⁰, ⁴⁴ S. Sato, ⁴², ⁴⁵ T. Sakagueth, ⁴⁸, ⁵⁷ V. Sashol, ⁵⁸ A. Sakin, ⁵⁸ V. Sarisonov, ⁵⁸ H. Sakata, ⁵⁸ V. Samsonov, ⁴⁸ H.D. Sato, ²⁰, ⁴⁴ S. Sato, ⁴⁰, ⁴⁵ C. S. Sawada, ²⁵ J. Seclo, ⁵⁸ R. Setil, ²⁰ V. Semenov, ¹⁵ R. Seto, ⁵⁸ D. Shrima, ⁵⁸ T.K. Shog, ¹⁶ L. Sheta, ⁵¹ C.L. Silva, ⁴⁸ D. Silvestre, ¹² K.S. Sim, ⁷⁸ C.P. Singh, ⁷ V. Sungh, ⁵⁸ S. Skutnik, ²⁹ M. Sulmoeka, ⁵² W.C. Smith, ¹⁸ A. Soldatov, ¹⁸ R.A. Solva, ³¹ W.E. Sondheim, ²⁸ S.P. Sterlae, ¹⁸ C. Sutre, ⁴¹ J.P. Sullivan, ²² J. Sakkla, ²⁶ T. Tabaru, ⁴⁵ S. Thagat, ⁴⁵ E. M. Takagun, ⁴⁸ A. Takacani, ⁴⁴ C. H. Thanaka, ⁴⁵ V. Tanaka, ⁴⁷ K. Tanaka, ⁴⁸ M. J. Tannenbaum, ⁴ A. Taraencho, ⁵⁰ P. Taffa, ¹³ A. Takacani, ⁴⁴ K.H. Tanaka, ⁴⁵ V. Tanaka, ⁴⁷ K. Tanacan, ⁴⁸ M. J. Tannenbaum, ⁴ A. Taraencho, ⁵⁰ P. Taffa, ¹⁸ A. Takacani, ⁴⁴ C. H. Tanacan, ⁴⁵ C. Sun, ⁴⁸ C. Tanacan, ⁴⁸ M. J. Tannenbaum, ⁴ A. Taraencho, ⁵⁰ P. Taffa, arXiv:0912.0244 422 authors 59 institutions 56 pages 50 figures 13 tables Submitted to Physical Review C on 1st December 2009 comprehensive results of dilepton measurements at RHIC. ## **Background** - Type I: identified on a pair-by-pair basis: - Overlapping hits in the detectors (mostly RICH) - Photon conversions - Type II: cannot be identified on pair-by-pair basis → removed statistically - Combinatorial B^{comb} all combinations where the origin of the two electrons is totally uncorrelated - Correlated B^{corr} - Cross pairs: Two pairs in the final state of a meson - Jet pairs: Two hadrons within the same jet or in back-toback jets, decay into electron pairs ## **Overlapping pairs** when a pion points to the same ring as an electron, it is associated to the same ring, therefore considered an electron This happens for a typical values of opening angle (different for like and unlike) which folded with the average momentum of the electron corresponds to a particular invariant mass (different for like and unlike) → cut: requested minimum distance between the rings (~1 ring diameter) - Cut applied as event cut - Real events: discarded and never reused - Mixed events: regenerated to avoid topology dependence # Photon conversion rejection - artifact of PHENIX tracking - assume that all tracks originate from the vertex - off vertex tracks → wrong momentum vector - → conversions are reconstructed with m≠0 (m~r) conversions "open" in a plane perpendicular to the magnetic field # Low-mass eter pairs: the problem electrons/event in PHENIX ``` • N_e = (dN/d\eta)\pi^0 * (BR+CONV) * acc * f(p_T>0.2GeV) 350 (0.012+0.02) 0.5*0.7 0.32 = 1.3 ``` combinatorial background pairs/event • $$B = \frac{1}{2} * \frac{1}{2}N_e^2 e^{-N} = 0.1$$ - expected signal pairs/event (m>0.2GeV, p_T>0.2 GeV) - $S = 4.2*10^{-4}$ - →signal/background - as small as 1/ few hundred - depends on mass - what can we do to reduce the combinatorial background? where does it come from? # **Conversion/Dalitz rejection?** - typically only one "leg" of the pair is in the acceptance - acceptance holes - "soft" tracks curl up in the magnetic field - only (!) solution - catch electrons before they are lost - need new detector and modification of magnetic field # Consequences of poor S/B^{comb} - how is the signal obtained? - unlike-sign pairs: F - combinatorial background: B (like-sign pairs or event mixing) - $\bullet \rightarrow S = F B$ - statistical error of S - depends on magnitude of B, not S - $\Delta S \approx \sqrt{2B}$ (for S<<B) - "background free equivalent" signal S_{eq} - signal with same relative error in a situation with zero background - S_{eq} = S * S/2B - example: $S = 10^4$ pairs with S/B = 1/250 \rightarrow $S_{eq} = 20$ - systematic uncertainty of S - dominated by systematic uncertainty of B - example: event mixing with 0.25% precision (fantastic!) → ~60% systematic uncertainty of S (for S/B = 1/250) # Type II background #### **METHOD 1** - Combinatorial background: event mixing - Like and Unlike-sign pairs taking electons from different events - Normalize like-sign background to like-sign foreground in a region in (m,p_T)where they agree - Normalize unlike-sign background to 2√N₊₊N₋ - Correlated background: simulations - Cross pairs: EXODUS - Jet pairs: PYTHIA - Normalize like-sign background to like-sign foreground - Normalize unlike-sign background in the same way #### **ADVANTAGE** Great statistics (much larger than foreground) #### **DISADVANTAGE** - Assume simulation shape - Need independent normalization # Type II background #### **METHOD 2** - If $dN_{like} = dN_{unlike} \rightarrow S_{+-} = N_{+-} 2\sqrt{N_{++}N_{-}}$ - In PHENIX dN_{like} ≠ dN_{unlike} - But unlike-sign background $B_{+-} = 2\sqrt{N_{++}N_{--}}$ can be corrected by acceptance difference $$S_{+-} = N_{+-} - 2\sqrt{N_{++}N_{--}} \cdot \frac{B_{+-}^{\text{comb}}}{2\sqrt{B_{++}^{\text{comb}} \cdot B_{--}^{\text{comb}}}}$$ #### **ADVANTAGE** - This method measures ALL type II background simultaneously - •only assumptions needed: - dN_{like} measures only background - Background symmetric in like and unlike #### **DISADVANTAGE** Poor statistics (similar to foreground) # **Combinatorial Background shape** - Shape determined with event mixing - Excellent agreements for likesign pairs - Normalization of mixed pairs - Small correlated background at low masses - normalize B₊₊ and B₋₋ to N₊₊ and N₋₋ for m_{ee} > 0.7 GeV/c² - Normalize mixed B_{+-} pairs to $N_{+-} = 2\sqrt{N_{++}N_{--}}$ - Subtract correlated background - Systematic uncertainties - statistics of N₊₊ and N₋: 0.12% - different pair cuts in like and unlike sign: 0.2 % # **Differential Combinatorial Background** | Centrality | p_0 | χ^2/NDF | χ^2 test | <i>p</i> -value | max dev. | | |-----------------------------|-------------------------------|---------------------|---------------|-----------------|----------|--| | 0-10% | $6.3 \pm 8.8 \times 10^{-4}$ | 30.2/19 | 1.05 | 0.25 | 0.0014 | | | 10-20% | $-9.4 \pm 1.4 \times 10^{-4}$ | 18.6/19 | 0.97 | 0.61 | 0.0018 | | | 20-40% | $-2.4 \pm 1.8 \times 10^{-3}$ | 18.7/19 | 1.02 | 0.40 | 0.0034 | | | 40-60% | $-8.5 \pm 4.9 \times 10^{-3}$ | 21.9/19 | 1.65 | 0.02 | 0.0071 | | | 60-92% | $-1.8 \pm 1.6 \times 10^{-2}$ | 21.5/14 | 1.51 | 0.04 | 0.0321 | | | 00-92% | $2.6 \pm 6.3 \times 10^{-4}$ | 27.6/19 | 0.92 | 0.83 | 0.0010 | | | $p_T < 1 \text{ GeV}/c$ | $9.2 \pm 5.1 \times 10^{-4}$ | 18.9/18 | 0.95 | 0.73 | 0.0011 | | | $1 < p_T < 2 \text{ GeV}/c$ | $-3.4 \pm 1.6 \times 10^{-3}$ | 27.9/18 | 0.91 | 0.84 | 0.0029 | | | $p_T > 2 \text{ GeV}/c$ | $-9.6 \pm 5.4 \times 10^{-3}$ | 15.2/18 | 0.97 | 0.63 | 0.0038 | | ## **Combinatorial and Correlated Background** - •Combinatorial Background from mixed events normalized to 2√N₊₊N₋₋ - Cross pairs simulated with decay generator EXODUS - Jet pairs simulated with PYTHIA - normalized to like sign data and use same normalization for unlike-sign # **Uncertainty of Background Subtraction** •RMS → Systematic Uncertainty ## **Cross check Converter Method** - We know precise radiation length (X₀) of each detector material - The photonic electron yield can be measured by increase of additional material (photon converter was installed) - The non-photonic electron yield does not increase - Photonic single electron: x 2.3 - Inclusive single electron :x 1.6 - Combinatorial pairs :x 2.5 Photon Converter (Brass: 1.7% X_0) ## The raw subtracted spectrum Same analysis on data sample with additional conversion material → Combinatorial background increased by 2.5 Good agreement within statistical error From the agreement converter/non-converter and the decreased S/B ratio scale error = 0.15±0.51% (consistent with the 0.25% error we assigned) # **Efficiency Correction** #### **Efficiency Correction:** - Derived from single electron efficiency - Include detector dead areas - Include pair cuts - •Same shape for p+p and Au+Au - p+p further corrected for trigger efficiency m_{ee} (GeV/c²) # **Acceptance Correction** #### **Acceptance Correction:** - •Derived from single electron acceptance - Compare - Hadron decays (full cocktail) - Flat distribution in different mass regions as function of p_T Difference within ~10% #### **Hadronic Cocktail Measurement** • Parameterization of PHENIX π^{\pm},π^{0} data $\pi^{0} = (\pi^{+}+\pi^{-})/2$ $$E \frac{d^{3}\sigma}{d^{3}p} = \frac{A}{\left(exp(-ap_{T} - bp_{T}^{2}) + p_{T}/p_{0}\right)^{n}}$$ - Other mesons:fit with m_T scaling of π^0 $p_T \rightarrow \sqrt{(p_T^2 + m_{meson}^2 m_{\pi}^2)}$ fit the normalization constant - →All mesons m_T scale!!! - Hadronic cocktail was well tuned to individually measured yield of mesons in PHENIX for both p+p and Au+Au collisions. - Mass distributions from hadron decays are simulated by Monte Carlo. - π⁰, η, η', ω, φ, ρ, **J/**ψ, ψ' - Effects on real data are implemented PLB 670,313(2009) # Cocktail Comparison p+p arXiv:0912.0244 - 2.25pb⁻¹ of triggered p+p data - Data absolutely normalized Lecture - Excellent agreement with Cocktail - Filtered in PHENIX acceptance Light hadron contributions subtracted **Heavy Quark Cross Sections:** - Charm: integration after cocktail subtraction $\sigma_{cc} = 544 \pm 39^{stat} \pm 142^{syst} \pm 200^{model} \, \mu b$ - Simultaneous fit of charm and bottom: - $-\sigma_{cc} = 518 \pm 47^{stat} \pm 135^{syst} \pm 190^{model} \mu b$ - $-\sigma_{bb} = 3.9 \pm 2.4^{stat} + 3/-2^{syst} \mu b$ - Charm cross section from single electron measurement [PRL97, 252002 (2006)]: Alberica Toia ## **Charm and bottom cross sections** #### **CHARM** Dilepton measurement in agreement with single electron, single muon, and with FONLL (upper end) #### **BOTTOM** Dilepton measurement in agreement with measurement from e-h correlation and with FONLL (upper end) First measurements of bottom cross section at RHIC energies! #### arXiv:0912.0244 ## **Cocktail Comparison Au+Au** - Low Mass Region: large enhancement 150 <m_{ee}<750 MeV - 4.7±0.4stat ±1.5syst ±0.9model - Intermediate Mass Region: dominated by charm ($N_{coll} \times \sigma_{cc}$) - PYTHIA - Random cc correlation - Single electron measurement - High p_T suppression - Flow - → Expected modifications in the pair invariant mass - → random cc correlation? - →Room for thermal contribution? - · Light hadrons cocktail - Charm normalized N_{coll} x σ_{pp} Filtered in PHENIX acceptance arXiv:0912.0244 ## **Centrality Dependence LMR** | Centrality | Enhancement (\pm stat \pm syst \pm model) | |------------|--------------------------------------------------| | 00-10 % | $7.6 \pm 0.5 \pm 1.5 \pm 1.5$ | | 10-20~% | $3.2\pm0.4\pm0.1\pm0.6$ | | 20- $40~%$ | $1.4 \pm 1.3 \pm 0.02 \pm 0.3$ | | 40- $60~%$ | $0.8 \pm 0.3 \pm 0.03 \pm 0.2$ | | 60- $92~%$ | $1.5 \pm 0.3 \pm 0.001 \pm 0.3$ | | MB | $4.7 \pm 0.4 \pm 1.5 \pm 0.9$ | • π^0 region: consistent with cocktail - Low Mass Region: yield increases faster than proportional to N_{part} - \rightarrow enhancement from binary annihilation ($\pi\pi$ or qq) ? arXiv:0912.0244 arXiv:0912.0244 **Centrality Dependence IMR** ## charm is a hard probe - total yield follows binary scaling (known from single e[±]) - intermediate mass yield shows the same scaling ## **Momentum Dependence** Lecture ## **LMR I: Virtual Photons** - Any source of real γ can emit γ^* with very low mass. - If the Q² (=m²) of virtual photon is sufficiently small, the source strength should be the same - The ratio of real photon and quasi-real photon can be calculated by QED - → Real photon yield can be measured from virtual photon yield, which is observed as low mass e⁺e⁻ pairs #### **Kroll-Wada formula** $$\frac{d^{2}N}{dM_{ee}dN_{\gamma}} = \frac{2\alpha}{3\pi} \sqrt{1 - \frac{4m_{e}^{2}}{M_{ee}^{2}}} \left(1 + \frac{2m_{e}^{2}}{M_{ee}^{2}}\right) \frac{1}{M_{ee}} S$$ #### S: Process dependent factor Case of Hadrons Hadrons $$S = |F(M_{ee}^2)|^2 \left(1 - \frac{M_{ee}^2}{M_{hadron}^2}\right)^3$$ - Obviously S = 0 at $M_{ee} > M_{hadron}$ - Case of γ* • If $$p_T^2 >> M_{ee}^2$$ $S = 1$ • Possible to separate hadron decay components from real signal in the proper mass window. # Determination of γ^* fraction, r $r = direct \gamma^*/inclusive \gamma^*$ determined by fitting the following function for each p_T bin. $$f_{data}(M_{ee}) = (1-r) \cdot f_{cocktail}(M_{ee}) + r \cdot f_{direct}(M_{ee})$$ - f_{direct} is given by Kroll-Wada formula with S = 1. - f_{cocktail} is given by cocktail components - Normalized to the data for m<30 MeV/c² - Fit in 120-300MeV/c² (insensitive to π^0 yield) - Assuming direct γ* mass shape: χ²/NDF=12.2/6 arXiv:0804.4168 arXiv:0912.0244 # Direct measurement of S(m_{ee}, p_T) $$\begin{split} R(m,p_T) \; &\simeq \; \frac{dN_{\gamma^*}^{\rm excess}(m,p_T)}{dp_T} / \frac{dN_{\gamma}^{\rm incl}(p_T)}{dp_T} \\ &= \; S(m,p_T) dN_{\gamma}^{direct}(p_T) / dN_{\gamma}^{\rm incl}(p_T) \end{split}$$ No indication of strong modification of EM correlator at this high p_T region (presumably the virtual photon emission is dominated by hadronic scattering process like $\pi+\rho\rightarrow\pi+\gamma^*$ or $q+g\rightarrow q+\gamma^*$) Extrapolation to M=0 should give the real photon emission rate arXiv:0912.0244 41 ## direct γ*/inclusive γ* ## **Base line** Curves: NLO pQCD calculations with different theoretical scales done by W. Vogelsang. $$\left(d\sigma_{\gamma}^{NLO}/dp_{T}\right)/\left(d\sigma_{\gamma}^{NLO}/dp_{T}+d\sigma_{\gamma}^{hadron}/dp_{T}\right)$$ #### p+p - Consistent with NLO pQCD - better agreement with small µ #### Au+Au Clear enhancement above NLO pQCD ## 1st measurement of Thermal Radiation - Direct photon - -real (p_T>4GeV) - -virtual (1<p_T<4GeV & m_{ee} <300MeV) - pQCD consistent with p+p down to p_T=1GeV/c - Au+Au above N_{coll} x p+p for p_T < 2.5 GeV/c - Au+Au = pQCD + exp: $T_{ave} = 221 \pm 19^{stat} \pm 19^{syst}$ #### arXiv:0912.0244 ## Comparison to Hydro models 44 - From data: Au+Au = pQCD + exp: $T_{ave} = 221 \pm 19^{stat} \pm 19^{syst}$ - Comparison to hydrodynamical models: - p_T<3 GeV/c thermal contribution dominates over pQCD. - Assume formation of a hot QGP with 300 MeV < T_{init} < 600 MeV 0.6 fm/c < τ_0 < 0.15 fm/c - Models reproduce the data within a factor of two. 0.2 0.4 #### arXiv:0912.0244 ## LMR II longer const 0.6 8.0 1.2 m_{ee} (GeV/ c^2) Large and broad enhancement → S(m_{ee}) no - →S(m_{ee}) const - <R>=0.177±0.032 - Consistent with higher p_T values HGS-HIRe Lecture Week ## Extrapolate the spectrum of direct photons - For $0.8 < p_T < 1.0$ GeV/c $< R > = 0.177 \pm 0.032$ consistent with higher p_T - Decay photons spectrum steeper than direct γ spectrum - → At lower p_T , the expected direct photon fraction 10³ $r = \text{direct } \gamma \text{ / inclusive } \gamma = \text{direct } \gamma \text{ / (direct + 10⁴ decay) } \gamma \le 0.17$ - For $0.4 < p_T < 0.6 \text{ GeV/c}$ R(m) > 0.17 - → The enhancement in the low p_T region is larger than that expected from internal conversion of direct photons. ## **Dilepton Spectra** Acceptance- corrected Au+Au $p_T>1GeV/c$: small excess \rightarrow internal conversion of direct photons p_T<1GeV/c: large excess for 0.3<m_{ee}<1 GeV →Low temperature component with strong modification of EM correlator? ## **Average Temperature of the sources** arXiv:0912.0244 m_T - m₀ spectrum of Excess = Data - (cocktail+charm) • Fit: $$\frac{d^2N}{2\pi m_T dm_T dy} = A_1 \cdot \exp{-\frac{m_T}{T_1}} + A_2 \cdot \exp{-\frac{m_T}{T_2}}$$ or $\frac{d^2N}{2\pi m_T dm_T dy} = A_1 \cdot \exp{-\frac{m_T}{T_1}} + 1$ Direct γ $T_1 = 92.0 \pm 11.4^{stat} \pm 8.4^{syst} \text{ MeV}$ $T_2 = 258.4 \pm 37.3^{stat} \pm 9.6^{syst} \text{ MeV}$ $\chi^2/NDF = 4.00/9$ $T_1 = 86.5 \pm 12.7^{\text{stat}} + 11.0_{-28.4 \text{syst}}$ MeV $T_{\gamma} = 221 \pm 19^{\text{stat}} \pm 19^{\text{syst}}$ MeV $\chi^2/\text{NDF} = 16.6/11$ low mass enhancement has inverse slope of ~100 MeV. ## **Theory comparison** - $\pi\pi$ annihilation + modified ρ spectral function - Broadening - Mass shifting - Both - Insufficient to explain data arXiv:0912.0244 ## **Theory comparison II** Even when looking differentially in various p_T bins the theoretical calculations are insufficient to explain the data #### High p_T region: here we isolated a contribution arising from • π+ρ→π+γ* (typically included) or q+g→q+γ* (not included so far) # Low p_T region: where the enhancement becomes large and its shape seems incompatible with unmodified q+g→q+γ* ## Theory comparison III - The theoretical calculations are insufficient to explain the data - High p_T : they are too soft (except for HSD which does not include partonic contribution) - Low p_T: they are too hard to explain the enhancement (T~100 MeV) what is missing? Lecture # **Summary** - EM probes ideal "penetrating probes" of dense partonic matter created at RHIC - Double differential measurement of dilepton emission rates can provide - Temperature of the matter - Medium modification of EM spectral function - PHENIX measured dilepton continuum in p+p and Au+Au p+p #### Low Mass Region - Excellent agreement with cocktail - LMR I deduce photon emission in agreement with pQCD - LMR II Excellent agreement with cocktail Au+Au #### Low Mass Region - Enhancement above the cocktail 4.7±0.4^{stat} ±1.5^{syst}±0.9^{model} - LMR I deduce photon emission exponential above pQCD, T>200 MeV - LMR II - Centrality dependency: increase faster than N_{part} - p_T dependency: enhancement concentrated at low p_T, T ~ 100 MeV HGS-HIRe #### Intermediate Mass Region Extract charm and bottom cross section Intermediate Mass Region Agreement with PYTHIA: coincidence? # **Near-Future Measurements at RHIC** - Improve measurement in the LMR - reduce combinatorial background - → Hadron Blind Detector: ### Dalitz rejection via opening angle - identify e[±] in field free region - veto signal e[±] with partner - HBD concept - windowless CF4 Cherenkov detector - 50 cm radiator length - Csl reflective photocathode - triple GEM with pad readout - HBD time scale - Proof of principle in 2007 - Successful data taking with p+p 2009 - Ready for Au+Au in 2010 - Improve measurement in the IMR - → disentangle charm and thermal - HGS-HIRe Contribution - → Silicon Vertex Detector # **Future** - dielectron measurements in high energy HI collisions - go to even higher energy, i.e. maximum temperature → LHC - go back to lower energy, i.e. maximum baryon density → FAIR - stay at RHIC - HBD (and silicon vertex upgrades) for improved experiments at maximum RHIC energy - "low energy" program, i.e. use RHIC as a storage ring instead of an accelerator ## **EM Probes at LHC** #### **DILEPTONS** #### Low p_T - Thermal/bulk photons (QGP + hadronic phase) - Photons from jet-medium interactions - Jet-photon conversion, Induced photon bremsstrahlung **PHOTONS** - Cross sections forward/backward peaked - Yields approximately proportional to the jet distributions Sensitivity to early time jet distributions - Longer path lads to increased production → Negative v2 #### High p_T - Prompt photons from initial hard processes - No final state effects at all. - Fragmentation/vacuum bremsstrahlung - Sensitivity to medium effects in the final state At higher dN/dy thermal radiation from hadron gas dominant for m<1GeV • For m>1GeV relatively stronger QGP radiation: comparable to DD but energy loss??? # **Projections for RHIC: high energy** - impact of the HBD & modified B field at top energy - recorded collisions - 10⁹ - 10¹⁰ # **Projections for RHIC: low energy** - collision rates decrease with decreasing beam energy - ~40 Hz @ 8.6 GeV/u - 2 weeks run time gives ~50M events - HBD 'eliminates' sys. uncertainty - electron cooling in RHIC can increase the collision rate by a factor 10 → ~500M events in 2 weeks - →very promising!!!